The viaLibri website requires cookies to work properly. You can find more information in our Terms of Service and Privacy Policy.

Displayed below are some selected recent viaLibri matches for books published in 1832

        Black-eared Wheatear

      Vol II John and Elizabeth Gould Black-eared Wheatear An original hand-coloured lithograph for Gould's 'Birds of Europe', 1832-37 530 x 360 mm approx £515

      [Bookseller: Henry Sotheran Ltd.]
 1.   Check availability:     Direct From Seller     Link/Print  

        On political economy;

      8vo., viii + 566pp., contemporary polished calf, the sides embossed in blind, spine gilt with raised bands and label, all edges gilt. A fine presentation copy inscribed in ink in the author's hand ("To the Revd Dr Euston[?] with Dr. Chalmers best regards")Publisher: Glasgow: printed for William Collins; ...Year: 1832Edition: First edition. Kress C.3079. Goldsmiths 27260. Williams I, p.198. McCulloch p.19. Hollander 2991. Einaudi (1012) has only the 2nd edition.

      [Bookseller: John Drury Rare Books]
 2.   Check availability:     Direct From Seller     Link/Print  

        Practische Instruction, Handgriffe und Vortheile für Kutscher und Stallleute in fürstlichen Marställen und bei anderen Herrschaften, oder deutliche Anweisung zur Stallpflege, zum Reiten und besonders zum Fahren mit zwei, vier und sechs Pferden...

       Ilmenau, Voigt 1832. 8°. 3 Bll., 90 S. Mit 1 gefalt. Titelkupfer. OBrosch. Rü. m. Leinenstreifen, Taf. wasserrand. u. m. restaur. Randläsuren. Kl. Eckabrisse a. d. ersten Bll.Erste und einzige Ausgabe. Selten! Mit hoher Genehmigung des Großherzoglichen Hof-Stall-Amtes zu Weimar herausgegeben von Johann Samuel Hafftendorn, Sr. Königlichen Hoheit des Großherzogs von Sachsen-Weimar- und Eisenach Leibkutscher. Versand D: 4,00 EUR Reitkunst, Hippologie

      [Bookseller: Antiquariat Burgverlag]
 3.   Check availability:     Link/Print  

        [Nuova Raccolta di Scene Teatrali inventate dal celebre Sanquirico]. Collection of 132 lithographic prints of set designs from operas and ballets staged in Milan at La Scala, ca. 1815-1830

      Milan: [1827-1832]. Oblong folio (ca. 260 x 360 mm.). Loosely assembled in an early marbled paper portfolio with label to upper "Sanquirico Scene Teatrali." Together with: Title and 7 aquatint engravings from the third volume of the "Raccolta di Scene Teatrali eseguite o disegnate dai piu celebri Pittori Scenici in Milano Parte III," Milano: Stanislao Stucchi, [ca. 1825]: 18. Accampamento degli Arabi nel deserto Nel Ballo Sesostri Atto IV 26. Festa da Ballo dalla città di Milano, nell' I.R. Teatro della Canobiana 33. Luogo Remoto Nel Ballo Tippo Saeb 43. Spiaggia d'Arco nel Ballo Oreste Atto I 71. Incendio del Campo Romano nel Ballo Arminio Atto ult.o 79. Tombe Reali nel Ballo Gengiskan Atto IV 100. Festa Campestre Secondo Sipario dell I.R. Teatro alla Scala Slightly worn, soiled, and foxed, particularly at edges. A very good, wide-margined copy overall. The Nuova Raccolta is quite rare. We have located 4 copies only (at the Italian National Library, 247 plates; the Austrian National Library, 252 plates; the Getty Research Center, 243 plates; and Harvard, number of plates not given). Sanquirico was the principal designer at La Scala from 1818 to 1832.

 4.   Check availability:     Direct From Seller     Link/Print  

        Theoria residuorum biquadraticorum. Commentatio prima [- secunda].

      Göttingen: Dieterich, 1828 [- 1832]. First edition, very rare separately-paginated offprint issues, of these two important papers, in which Gauss coined the term 'complex number' and introduced the complex plane now known as the 'Gaussian plane'. Gauss offprints are especially difficult to find on the market in contemporary bindings, most having been removed from sammelbands and rebound later. "The foundations of the theory of algebraic integers were laid by Gauss in his important work Theoria residuorum biquadraticorum, Commentatio II, which appeared in 1832, in which he considered the numbers a + bi (i = ?-1)" (Klein, p. 320). "In the Disquisitiones [Arithmeticae, 1801], Gauss gave the first rigorous proof of 'the gem of arithmetic' -- the law of quadratic reciprocity. In a series of papers published between 1808 and 1817 Gauss worked on reciprocity laws for congruences of higher degree, and in two papers published in 1828 and 1832 stated (but did not prove) the law of biquadratic [i.e., quartic] reciprocity" (Ewald, p. 306). "In the second part of his study of biquadratic residues (1832), [Gauss] argued that number theory is revealed in its "entire simplicity and natural beauty" (Sect. 30) when the field of arithmetic is extended to the imaginary numbers. He explained that this meant admitting numbers of the form a + bi. "Such numbers," he said, "will be called complex integers". More precisely, he went on in the next section, the domain of complex numbers a + bi contains the real numbers, for which b = 0 and the imaginary numbers, for which b is not zero. Then, in Sect. 32, he set out the arithmetical rules for dealing with complex numbers. We read this as a step away from the idea that i is to be understood or explained as some kind of a square root, and towards the idea that it is some kind of formal expression to be understood more algebraically" (Bottazzini & Gray, p. 71). These papers directly influenced 20th and 21st century mathematics: after reading them in 1947, the great French mathematician André Weil was inspired to formulate the 'Weil Conjectures', which had a profound effect on the subsequent development of number theory and algebraic geometry (see below). No copies listed on ABPC/RBH in the last 50 years. Quadratic reciprocity is a result about 'modular arithmetic.' Two integers (whole numbers) m and n are said to be equal modulo a positive integer p if m - n is an integer multiple of p (so there are only p distinct integers modulo p). "The first really great achievement in the study of modular arithmetic was Carl Friedrich Gauss's proof in 1796 of his celebrated law of quadratic reciprocity ... It states that 'if p is a prime number, then the number of square roots of an integer n in arithmetic modulo p [i.e., the solutions modulo p of the equation x2 = n (mod p)] depends only on p modulo 4n'" (Taylor). The attempt to generalize quadratic reciprocity for powers higher than the second was one of the main goals that led nineteenth-century mathematicians, including Gauss himself, as well as Richard Dedekind, Gustav Lejeune Dirichlet, Gotthold Eisenstein, David Hilbert, Carl Jacobi and Eduard Kummer, to the study of general algebraic number fields (it was Eisenstein who gave the first proof of biquadratic reciprocity). The ninth in the list of 23 unsolved problems which David Hilbert proposed to the International Congress of Mathematicians in 1900 asked for the "Proof of the most general reciprocity law for an arbitrary number field." "In studying the congruence x4 = k (mod p) Gauss concentrated on the central case where the modulus p is a prime of the form 4n + 1, and found himself obliged to examine the complex factors into which prime numbers of such a form can be decomposed. He was thereby led to widen his investigations from the ordinary integers to the complex integers, i.e., to numbers of the form a + bi, where a and b are real integers. Gauss showed that many of the properties of real integers are shared by the complex integers -- for example that each complex integer has a unique prime factorization; that the Euclidean algorithm for finding the greatest common divisor of two integers carries over to the complex case; that Fermat's theorem has a complex analogue; and the like. "The principal methodological innovation in these investigations was the widening of the number concept to embrace the complex integers. Mathematicians in the seventeenth and eighteenth centuries had been almost as distrustful of imaginary numbers as of infinitesimals, and even Leibniz could write: "The nature of things, the mother of eternal manifolds, or rather the divine spirit, is more jealous of its splendid multiplicity than to allow everything to be herded together under a common genus. Therefore it found a sublime and wonderful refuge in that miracle of analysis, the monstrum of the ideal world, almost an amphibium between being and non-being, which we call the imaginary roots." "Gauss was not the first to conceive of representing complex numbers by points in the plane ... the idea had already occurred to John Wallis (in the Treatise of algebra, 1685), to Caspar Wessel in 1792, and to Jean Robert Argand in 1806; and William Rowan Hamilton was later to popularize the conception of a complex number as an ordered couple of real numbers. But Gauss was the first to use complex integers in a systematic way -- in his work on biquadratic residues. His remarks on the complex integers touch upon a central theme in nineteenth-century mathematics: the widening of the number concept, and the growth of abstract algebra" (Ewald, pp. 306-7). "Two of the papers that helped shape the research in number theory during the second half of this century directly referred to Gauss's work on biquadratic residues: first, there is Weil's paper from 1949 on equations over finite fields in which he announced the Weil Conjectures and which was inspired directly by reading Gauss: "In 1947, in Chicago, I felt bored and depressed, and, not knowing what to do, I started reading Gauss's two memoirs on biquadratic residues, which I had never read before. The Gaussian integers occur in the second paper. The first one deals essentially with the number of solutions of ax4 - by4 = 1 in the prime field modulo p, and with the connection between these and certain Gaussian sums; actually the method is exactly the same that is applied in the last section of the Disquisitiones to the Gaussian sums of order 3 and the equation ax3 - by3 = 1. Then I noticed that similar principles can be applied to all equations of the form axm + bym + czr + ... = 0, and that this implies the truth of the "Riemann hypothesis" ... for all curves axn + byn + czn = 0 over finite fields ... This led me in turn to conjectures about varieties over finite fields," namely the Weil Conjectures. "The other central theme in number theory during the last few decades came into being in two papers by Birch & Swinnerton-Dyer: while studying the elliptic curves y2 = x3 - Dx they were led to an amazing conjecture that linked local and global data of elliptic curves ... in these papers, the quartic reciprocity plays a central role in checking some instances of their conjectures" (Lemmermeyer, pp. xii-xiii). The Weil conjectures were proved largely by Alexander Grothendieck, using his vast reformulation and generalization of modern algebraic geometry, and by his student Pierre Deligne. The Birch & Swinnerton-Dyer conjecture, chosen as one of the seven Millennium Prize Problems listed by the Clay Mathematics Institute, is still unsolved. These papers were read on April 5, 1825 and April 15, 1831 and were published in Vols. 6 & 7 of the Commentationes Societatis Regiae Scientiarum Gottingensis, pp. 27-56 & 89-148. NDB VI, 103; Poggendorff I, 855; NDB VI, 103. Ewald, From Kant to Hilbert, Vol. 1, 1996. Klein, Vorlesungen uber die Entwicklung der Mathematik im 19. Jahrhundert, Bd. I, 1926. Lemmermeyer, Reciprocity Laws. From Euler to Eisenstein, 2000. For an introduction to reciprocity laws intended for non-mathematicians, see R. Taylor, 'Modular arithmetic: driven by inherent beauty and human curiosity,' Institute Letter, Summer 2012, Institute for Advanced Study, Princeton ( Two works in one volume, 4to (228 x 195 mm), pp. [1-3] 4-32; [2], [1] 2- 60. Contemporary half-cloth over marbled boards, paper lablem with manuscript lettering to spine.

      [Bookseller: SOPHIA RARE BOOKS]
 5.   Check availability:     Direct From Seller     Link/Print  

        Lettre de Napoléon François, ex-roi de Rome, Duc de Reichstadt, à S.M. Louis-Philippe Ier, Roi des Français. Relative à l'opinion de ce jeune Prince, touchant les affaires de la France et au désir qu'il aurait de venir tirer le sort à Paris. [ Rare lettre apocryphe de l'Aiglon ]

      1 brochure in-4, Saintes, Nivelleau D.L.V. Omp., Saintes, s.d. [circa 1832 ], 4 pp Dans son ouvrage consacré aux Bonaparte, Quérard cite cette brochure (vraisemblablement apocryphe) dans des éditions de Bordeaux et Bar-le-Duc. On connaît d'autres éditions (Toulon, Paris, Chartres, Lille, Nantes), mais cette édition de Saintes semble inconnue des bibliographies. Bon état (petites annotations effacées en p.4) . Français

      [Bookseller: Librairie Du Cardinal]
 6.   Check availability:     Link/Print  

        Traité d'orfévrerie, bijouterie et joaillerie ; contenant la description détaillée des caractères physiques et chimiques des métaux et pierres précieuses qui constituent les matières premières de cette belle branche de l'industrie française; de leur extraction du sein de la terre ; de l'art de les essayer, de les évaluer et de les mettre en oeuvre ; et généralement tout ce qui se rapporte à la théorie ou à la pratique de ces trois arts, qui, par leur analogie, n'en font qu'un

      Delaunay|& Borely ainé|& Joanne frères|& Levasseur|& Marteau|& Pailhiez|& Vallory, 1832. - Delaunay & Borely ainé & Joanne frères & Levasseur & Marteau & Pailhiez & Vallory, Paris 1832, 14,5x22cm, relié. - Edition originale. Reliure en demi chagrin rouge, dos à cinq nerfs sertis de filets noirs, deux traces de griffures en pied du dos (certainement les chiffres d'un précédent propriétaire qui ont été grattés), pièce de titre de chagrin noisette, plats de papier marbré, couvertures conservées, quelques frottements sur les coupes. Ouvrage bien complet de ses 7 planches dépliantes. Quelques rousseurs affectant principalement les planches du second volume. Rare. - [FRENCH VERSION FOLLOWS] Edition originale. Reliure en demi chagrin rouge, dos à cinq nerfs sertis de filets noirs, deux traces de griffures en pied du dos (certainement les chiffres d'un précédent propriétaire qui ont été grattés), pièce de titre de chagrin noisette, plats de papier marbré, couvertures conservées, quelques frottements sur les coupes. Ouvrage bien complet de ses 7 planches dépliantes. Quelques rousseurs affectant principalement les planches du second volume. Rare.

      [Bookseller: Librairie Le Feu Follet]
 7.   Check availability:     Link/Print  

        Scènes de la vie privée

      - Imprimerie de Madame-Delaunay, Paris 1832, 13x20,5cm, 4 volumes reliés. - Record Pierre: vincolanti mezza pelle di pecora della marina, di nuovo con false nervi decorati (1860). La pubblicazione di gran parte originale. Invio: Monsieur Leduc, l'autore di Balzac. Cancellature sulla qualificazione e il nome del dedicatario suggerisce che Balzac riprese la sua dedizione. 13 Gli ultimi due volumi contengono edizione originale: il Consiglio, la Borsa, il dovere di Singles di una donna, l'inizio della donna di trent'anni, la Rendezvous, il dito di Dio, i due incontri, il Espiazione (cinque capitoli, non collegati, formano la prima bozza della donna di trenta anni). - [FRENCH VERSION FOLLOWS] Edition en grande partie originale,  les deux derniers volumes contiennent en édition originale : "Le Conseil", "La Bourse", "Le Devoir d'une femme", "Les Célibataires", "Le début de la Femme de trente ans", "Le Rendez-vous", "Le Doigt de Dieu", "Les deux rencontres", "L'expiation" (cinq chapitres qui, sans lien entre eux, forment le premier jet de la Femme de trente ans). Reliures en demi basane marine, dos à quatre faux nerfs ornés de pointillés et fleurons dorés, plats de papier marbré, gardes et contreplats de papier à la cuve, tranches mouchetées, reliures légèrement postérieures datant de la seconde partie du XIXème. Ex-donos à la plume en têtes des gardes des deux premiers volumes. Quelques rousseurs affectant principalement la fin du quatrième et dernier volume. Très rare et énigmatique envoi autographe signé d'Honoré de Balzac : à Le Duc, l'auteur, de Balzac." Des ratures autographes sur le titre de civilité et le nom du dédicataire indiquent que Balzac a repris son envoi. Ainsi l'auteur adresse dans un premier temps son ouvrage à « Monsieur Delmar », banquier allemand et beau-frère de Mme Couturier de Saint-Clair (chez qui Balzac lira sa pièce L'Ecole des Ménages en mars 1839), avant de biffer son nom, dans un geste révélateur de ses rapports houleux avec le monde de la Finance et ses représentants.  L'auteur dédicace ensuite son livre « à Le Duc », sans autre mention, indiquant une réelle familiarité avec ce dédicataire qui ne figure pourtant dans aucune des biographies de Balzac. Il pourrait donc s'agir du personnage "Le Duc" de la pièce Vautrin interprété par Jemma au Théâtre de la Porte-Saint-Martin en 1840, avant que la pièce, écrite dans l'espoir de rembourser les dettes de Balzac, ne soit interdite.   Il ne serait guère surprenant que Balzac, qui affectionnait les surnoms, ait ainsi dédicacé ces Scènes de la vie privée - dont une nouvelle originale relate une histoire d'argent pervertissant le jugement d'un artiste - à l'un des acteurs malheureux qui subit avec lui les foudres de la critiques et de la censure.  Avec cette dédicace palimpseste, Balzac semble ainsi affirmer la suprématie de l'art sur les vaines vélléités financières.  

      [Bookseller: Librairie Le Feu Follet]
 8.   Check availability:     Link/Print  

        \"Chaussee von München über Freising nach Landshut\" (Tab. A) und \"Chaussee von München nach Landshut Deggendorf Regen und Zwisel\" (Tab. B - D).

       4 altkol. Kupferstiche aus Riedl, 1832, je 22 x 14 cm. Aus der sehr seltenen Fortsetzung des Adrian von Riedlschen Reise-Atlas von 1835. - Die vier Straßenkarten zeigen u. a. München, Freimann, Ismaning, Garching, Fröttmaning, Freising, Moosburg, Landshut, Ergolding, Wörth, Dingolfing, Landau, Plattling, Deggendorf, Regen und Zwiesel. - Breitrandig und sehr gut erhalten. Versand D: 6,00 EUR BAYERN, Landkarten, Oberbayern

      [Bookseller: Antiquariat Bierl]
 9.   Check availability:     Link/Print  


      Home     Wants Manager     Library Search     562 Years   Links     Contact      Search Help      Terms of Service      Privacy     

Copyright © 2018 viaLibri™ Limited. All rights reserved.