The viaLibri website requires cookies to work properly. You can find more information in our Terms of Service and Privacy Policy.

Displayed below are some selected recent viaLibri matches for books published in 1696

        Theatrum botanicum. das ist: neu vollkommenes kraeuter-buch/ worinnen allerhand erdgewaechse der baeumen/ stauden und kraeutern/ welche in allen vier theilen der welt/

      sonderlich aber in Europa herfür kommen/ neben ihren sonderbahren Eigenschaften... Auch mit schoenen/ theils neuen figuren gezieret... Basel, Jacob Bertsche, 1696. Folio (355 x 220mm). pp. (10), 995, (53), with engraved frontispiece, 1 folding engraved portrait of Zwinger and about 1200 woodcuts in the text. Contemporary vellum (old repair to hinges). First edition. Rare German herbal of which the second edition of 1744 seems to be more common than the present first editon. The work is largely based on Mattioli and is illustrated with the Gesner/ Camerarius woodcuts, which were used for several of the Mattioli editions. Theodor Zwinger (1658-1724) was professor of physics and botany at Basel and 'was most successful as a practioner and had a large number of patients. He was a man of great learning and sound scholarship...' (Ferguson II, p. 576). A fine large copy. Nissen BBI, 1311; Pritzel 10532.

      [Bookseller: Antiquariaat Junk B.V.]
 1.   Check availability:     maremagnum.com     Link/Print  


        Een Let Arithmetica Eller Regne-Kunst hvorudi findes Alle Slags Ud-Regninger/ ikke alleene til Lettelse ved dend daglig Handel udi Kiøb og Sal/ enten Priisen er liden eller stor/ men og gandske beqvem og nyttig for Folck/ af alle slags Conditioner.

      Kiøbenhafn, Joh. Jacob Bornheinrich, 1696. Upag. Indb. helpergament over træ.. Udkommet første gang 1689. (Bibl. Dan. II) Bogen hænger pænt sammen men er præget af brug gennem tiden. De sidste par friblade noget forrevne.(Porto kr. 40,- på brevforsendelser i Danmark)

      [Bookseller: Bøger & Kuriosa]
 2.   Check availability:     Antikvariat     Link/Print  


        Analysin magni problematis isoperimetrici in actis erud. Lips. m. Maj. 1697 pag. 214 propositi ... sub praesidio Jacobi Bernoulli... publice defendendam suscipit Joh. Jacobus Episcopius.Basel: Typis Joh. Conradi à Mechel, 1701.

      Very rare first separate edition of Bernoulli's solution of the isoperimetric problem, which represents the beginnings of the calculus of variations, later to be developed extensively by Euler and Lagrange.<br/><br/> In 1696 Johann Bernoulli had posed as a challenge to the mathematicians of Europe the problem of finding the curve of quickest descent, the so-called brachistochrone. Solutions were given by L'Hospital, Leibniz, Newton, and by Johann's brother Jakob in the May 1697 issue of Acta Eruditorum, At the end of this memoir Jakob raised the isoperimetric problem as a challenge to his readers, but especially to Johann (he even offered Johann a prize of 50 silver ecus for a satisfactory solution within three months). The isoperimetric problem asks for the curve of a given length joining two fixed points in the plane for which a certain integral is a maximum (a special case would be to maximize the area contained between the curve and the straight line joining the two points). "Johann underestimated the complexity of this problem by failing to perceive its variational character; and he furnished an incomplete solution... and thereby brought upon himself the merciless criticism of his brother. This was the beginning of alienation and open discord between the brothers - and also the birth of the calculus of variations. A comparison of Jakob's solution [in the offered work] with Johann's analysis of the problem... clearly shows Johann's to be inferior. Nevertheless, Jakob was not able to enjoy his triumph, since - for reasons that remain mysterious - the sealed envelope containing Johann's solution was not opened by the [Paris] Academy until 17 April 1706, the year following Jakob's death" (DSB, under Johann Bernoulli). After solving the isoperimetric problem, "Jakob was able to furnish the proof [also contained in the offered work], which Johann and Leibniz had been seeking in vain, that the inexpansible and homogeneous catenary is the curve of deepest center of gravity between the points of suspension" (ibid., under Jakob Bernoulli).<br/><br/> This separate edition was published in March 1701, two months before its appearance in the May 1701 issue of Acta Eruditorum. It was dedicated to L'Hospital, Leibniz, Newton and Fatio de Duillier. <br/><br/> OCLC lists 6 copies worldwide, none in America.. 4to: 179 x 150 mm. Pp. 18,(2). Old limp vellum, end papers renewed, fine and clean. Small tape repair to page 18

      [Bookseller: Sophia Rare Books]
 3.   Check availability:     Antikvariat     Link/Print  


        1. Johann: Supplementum defectus geometria cartesianae circa inventionem locorum; 2. Leibniz: Communicatio suae pariter, duarumque alienarum ad edendum sibi primum a Dn. Joh. Bernoullio; 3. Johann: Curvatura radii in diaphanis non uniformibus, ... ; 4. Jakob: Solutioproblematum fraternorum, ... ; 5. L'Hospital: Solutio problematis de linea celerrimi descensus; 6. Tschirnhaus: De methodo universalia theoremata eruendi, ... ; 7. Newton: Epistola missa ad praenobilem virum D. Carolum Mountague ...The Brachistochrone Problem. Leipzig: Gross & Fritsch, 1696-1697. First edition.

      In the June issue of Acta Eruditorum for the year 1696 Johann Bernoulli published a paper in which he presented a challenge to the best mathematicians:<br/><br/> <i>"Let two points A and B be given in a vertical plane. To find the curve that a point M, moving on a path AMB , must follow such that, starting from A, it reaches B in the shortest time under its own gravity."</i><br/><br/> Johann adds that this curve is not a straight line, but a curve well known to geometers, and that he will indicate that curve, if nobody would do so that year. Later that year Johann corresponded directly with Leibniz regarding his challenge. Leibniz solved the problem the same day he received notice of it, and almost correctly predicted a total of only five solutions: from the two Bernoullis, himself, L'Hospital, and Newton. Leibniz was convinced that the problem could only be solved by a mathematician who mastered the new field of calculus. (Galileo had formulated and given an incorrect solution to the problem in his <i>Dialogo</i>). <br/><br/> But by the end of the year Johann had still not received any other solutions. However, Leibniz convinced Johann that he should extend the deadline to Easter and that he should republish the problem. Johann now had copies of the problem sent to <i>Journal des sçavans</i>, the Philosophical Transactions, and directly to Newton. Earlier that year Johann had accused Newton for having filched from Leibniz' papers. Manifestly, both Johann and Leibniz interpreted the silence from June to December as a demonstration that the problem had baffled Newton. They intended now to demonstrate their superiority publicly. <br/><br/> But Newton sent a letter dated Jan. 30 1697 to Charles Montague, then president of the Royal Society, in which he gave his solution and mentioned that he had solved it the same day that he received it. Montague had Newton's solution published anonymously in the Philosophical Transactions. However, when Bernoulli saw this solution he realized from the authority which it displayed that it could only have come from Newton (Bernoulli later remarked that he 'recognized the lion by its claw'). <br/><br/> During the fall of 1697 Bernoulli further received solutions from his brother Jakob, L'Hospital and Tschirnhaus. In the May issue of <i>Acta Eruditorum</i> Bernoulli published these different solutions together with his own, and revealed to the learned world that the sought curve, which he called a brachistochrone, is a cycloid. Among the solutions the two by the Bernoulli brothers were of particular importance. Johann had ingeniously reformulated the challenge as a problem belonging to optics, i.e., the bending of a light ray through a transparent nonuniform media, and applied Fermat's principle of least time. He thus demonstrated the fundamental parallel between geometric optics and point mechanics, which would lead to the work of W.R. Hamilton in the 1830's. The solution by Jokab also contains a general principle, namely, that a curve which constitutes a maximum or minimum as a whole must also possess this property in the infinitesimal - the fundamental principle of the calculus of variations.. In: Acta Eruditorum, vol. 15 and 16: no.1 in 15:264-69, 1 plate; no. 2 in 16:201-5, 1 plate; no. 3 in 16: 206-11; no. 4 in 16:211-17; no. 5 in 16: 217-20; no. 6 in 16: 220-23; no. 7 in 16: 223-24. The two entire volumes offered. 4to: 208x170 mm. Two volumes in uniform contemporary vellum. pp [2] 604 and 9 plates; [8] 594 and 8 plates. Some heavy worming to pp 324-42 and plate vi of volume 15 (which is not part of any of the above mentioned articles). Some toning throughout as usual with the Acta. In all a very good set

      [Bookseller: Sophia Rare Books]
 4.   Check availability:     Antikvariat     Link/Print  


        Opera Omnia duobus tomis distincta

      Lugduni Batavorum Leiden: Hackius et al 1696 Lugduni Batavorum [Leiden]: Hackius, et al, 1696. First collected edition. Two volumes in one vols., Folio. Engraved title page, 2 double-page and 6 full-page engraved plates. Contemporary vellum with central gilt-stamped arms on upper cover. Superb copy . Giraldi, Giglio Gregorio (Lilius Gregorius Gyraldus) 1470-1552) was an Italian scholar and poet, born at Ferrara, "where he early distinguished himself by his talents and acquirements. he removed to Naples, hwere he lived on familiar terms with Jovianus Pontanus and Sannazaro; and subsequently to Lombardy, where he enjoyed the favour of the Mirandola family. At Miland in 1507 he studied Greek under Chalcondylas; and shortly afterwards, at Modena, he became tutor to Ercole (afterwards Cardinal) Rangone. About the year 1514 he removed to Rome, where, under Clement VII, he held the office of apostolic protonotary; but having in the sack of that city (1527) which almost coincided with the death of his patron Cardinal Rangone, lost all his property, he returned in poverty once more to Mirandola, whence again he was driven by the troubles consequent on the assassination of the reigning prince in 1533. The rest of his life was one long struggle with ill-health, poverty and neglect; and he is alluded to with sorrowful regret by Montaigne in one of his Essais (i. 34) as having, like Sebastian Castalio, ended his days in utter destitution. He died at Ferrara a man of very extensive erudition; and numerous testimonies to his profundity and accuracy have been given both by contemporary and by later scholars. His HISTORIA marked a distinctly forward step in the systematic study of classical mythology; and by his treatises DE ANNIS ET MENSIBUS, and on the CALENDARIUM., he contributed to bring about the reform of the calendar, which was ultimately effected by Pope Gregory XIII. Giraldi was also an elegant Latin poet" (Encyclopedia Britannica, 11th ed.)

      [Bookseller: James Cummins Bookseller ]
 5.   Check availability:     ABAA     Link/Print  


        Thesaurus eruditionis scholasticæ: Sive Supellex instructissima vocum, verborum, ac locutionum: tum rerum, sententiarum, adagiorum ac exemplorum... Jam olim post aliorum operas Per Augustum Buchnerum Recensitus & emendatus... Novam hanc editionem... Christophorus Cellarius...

      Thomas Fritsch, Leipzig 1696. Small folio. Titlepage in red and black. (6)+1303+(146) pages. Contemporary vellum. Bookplate on front pastedown. Well-preserved copy.. Not registered by Brunet. The first edition of this magnificent Latin encyclopedia came in 1571. This edition has German index

      [Bookseller: Vangsgaards Antikvariat]
 6.   Check availability:     Antikvariat     Link/Print  


        Isole della Dalmatia Divise Ne Suoi Contadi Parte Occidentale

      Vincenzo Coronelli Venice: Vincenzo Coronelli, 1696. unbound. very good(+). Map. Engraving with hand coloring. Image measures 17 5/8" x 23.75". Beautiful double page map of Croatia and the Dalmatian Coast. Shows place names, topographical and geographical details, coats of arms and historical political boundaries. Features an extravagant cartouche of two figures, one royal and the other religious, drawn by cherubs, horses, mermaids and mermen in a beautiful side wheel boat. Historical and chronology notes on either side. Italian text on verso. In excellent condition. Published by Vincenzo Coronelli (1650-1718), a Venetian map and globe maker. He obtained his Doctor of Theology in 1673 in Rome and became the cosmographer to the Republic of Venice in 1684.

      [Bookseller: Argosy Book Store ]
 7.   Check availability:     ABAA     Link/Print  


        (LA BRUYÈRE, JEAN de)

      Les caracteres de Theophraste traduits du grec, avec les caracteres ou les moeurs de ce siecle. Neuvieme edition, revûë & corrigée. Paris, E. Michallet, (1696). 12:o. (32),52,1-662,XLIV,(6) s. Titelbladet tryckt i rött och svart. Bra samtida ngt nött skinnbd med upphöjda bind, guldornerade pärmkanter och rygg samt titeletikett i röd marokäng. Rödstänkta snitt. Liten skinnförlust längst upp på ryggen och begynnande ytlig sprickbildning nederst i frampärmens ytterfals. Svag fuktfläck i yttre marginalen på s. 1-24 och två mindre fläckar i yttre marginalen på s. 649. Prydliga samtida marginalanteckningar. Med C. A. Gyldenstolpes namnteckning daterad i Paris 1699 och L. F. Rääfs exlibris.. Tchemerzine Bibliographie d'éditions originales et rares d'auteurs français III, s. 810. Le Petit Bibliographie des principales éditions originales d'écrivains français s. 434-35. Årtalet feltryckt som 1716 på titelbladet. Sidorna 233-34, 641-42 och 647-48 är utbytesblad. Första utgåvan trycktes 1688. La Bruyère omarbetade och utvidgade emellertid detta arbete i nya utgåvor fram till sin död 1696. Detta är den definitiva upplagan utifrån vilken senare editioner av verket har utgått. Marginalanteckningarna som är av Gyldenstolpes hand är lösta namn på en del av verkets anonyma karaktärsporträtt ur den franska samtiden. Carl Adolf Gyldenstolpe (1681-1709) var son till Nils Gyldenstolpe och gjorde tillsammans med sin broder Edvard en studieresa i Europa 1697-1701, varav de stannade nästan två år i Paris. De hade Daniel Niclas von Höpken som handledare och bl.a. matematikern J. Ozanam och författaren J. B. Rousseau som lärare. C. A. Gyldenstolpe blev senare kapten i Östgöta infanteriregemente och dog under Karl den XII:s fälttåg i Ukraina

      [Bookseller: Mats Rehnström]
 8.   Check availability:     Antikvariat     Link/Print  


        Freywillig-auffgesprungener Granat-Apffel, Deß Christlichen Samaritans. Wien, Voigt, 1696. 566 S., 8 Bll. Pgt. d. Zt. (etw. fleckig).

      Vgl. Wellcome II, 518; Krivatsy 11976; Horn-A. 125.- Zweite Ausgabe des erstmals 1695 erschienenen medizinisch-diätischen Werkes. 'Trotz der zahlreichen Auflagen ist das Buch nur in wenigen Exemplaren auf uns gekommen; die große Masse hat sich - der beste Beweis für die Wichtigkeit und Popularität des Werkes - im täglichen Gebrauch selbst aufgezehrt. Das Buch enthält über 1750 Rezepte für allerlei Krankheiten. ... Besonders groß ist die Zahl der Vorschriften für Frauen- und Kinderkrankheiten' (Bohatta, Eleonora).- Vereinzelt mit minimalem Feuchtrand im Außensteg oder minimal stockfleckig.

      [Bookseller: Antiquariat Schramm]
 9.   Check availability:     antiquariat.de     Link/Print  

______________________________________________________________________________


      Home     Wants Manager     Library Search     562 Years   Links     Contact      Search Help      Terms of Service      Privacy     


Copyright © 2018 viaLibri™ Limited. All rights reserved.